Innovate UK: Sphagnum Farming UK - a sustainable alternative to peat in growing media.

Jack clough, Sustainability Research Institute, UEL

Why Sphagnum farming?

Move from wild harvest

Project introduction

- Funded by innovate UK, from 1st Jan 2018 to March 2019
- Many Thanks to all our project Partners: Micropropagation services, Manchester Metropolitan University, The University of East London, Natural England, Melcourt industries and our farming partners the Stanleys.

Manchester Metropolitan University

Pioneering Futures Since 1898

University of

East London

Micropropagation Services (E.M.) Limited, under the trading name BeadaMoss®, own rights in inventions relating to Sphagnum farming. This technology is currently patent pending under application numbers GB1907229.7 and GB1907228.9.

Our aims:

"To investigate the cultivation requirements and the production potential involved in growing Sphagnum at scale sufficient to form a viable replacement for peat in horticulture"

- Key variables investigated:
- Sphagnum Growth and water relations (UEL)
- GHG emissions across sites and treatments (MMU)
- Performance of Sphagnum as a peat replacer in Growing media (Melcourt)

What happened:

- We created two research sites one in Leicestershire and one in Greater Manchester.
- The innovate UK funding largely covered the site set up and establishment phases, with planting taking place in August, September and November.

Sharpley site:

Little Woolden site:

Site set up, and context:

- We trialed two methods of Sphagnum supply developed by Micropropagation services – BeadaGel[™] and BeadaHumok ™
- We trialled two innovative irrigation solutions
- We trialled 3 different mulch treatments, with a no mulch control.

Methods:

Sphagnum Growth:

through TLS and Photo capture Also capturing:

Weather station data Soil nutrient analysis

Growth results – Sharpley site

Promising growth during the establishment phase

20 – 140% increase in mean plug size relative to initial planted plug, in first 6 months.

Pore water potential Price et al., 1998 Drought tolerance and recovery: Clymo and Hayward 1982.

Between 0 and -100Hpa Soil pore water pressures are too low to extract water from live sphagnum through capillary action.

The Sphagnum did not die:

Sharpley site:

Little Woolden site:

Future plans:

- Funding from PPL dream fund is allowing us to continue this years monitoring – what we are deeming the growth phase.
- We are close to achieving canopy closure on most plots at both sites. After 9-12 months since planting.
- MMU to continue GHG monitoring now Sphagnum cover is established.
- Hope to assess Sphagnum yields in 2020.
- Developing papers relating to the GHG story, conditions for growth, and peat replacement.

There are exciting times ahead: