

Approach to Shallow Peatlands

Iain Diack, Natural England Senior Specialist - Wetlands

Why are shallow peatlands important (part I)?

- They're carbon-rich
- One hectare of peat only 30 cm deep holds as much carbon as 1 hectare of primary rainforest (Lindsay et al., 2019)
- The extent of shallow peatlands is considerably greater than that of deep peat, so very significant carbon store
- They forms the major peat deposit over considerable parts of the country
- They form the headwaters of vast numbers of watercourses

Why are shallow peatlands important (part II)?

- Shallow peatlands are created by, and sustain
 - Base-rich (alkaline) fens EN
 - Molinia mires EN (Temperate and boreal moist or wet oligotrophic grassland)
 - Acidic fens VU
 - Wet heaths VU
 - Wet woodlands VU
- Marsh fritillary, SPB fritillary,
- Snipe, curlew
- Rare mosses

Summary of organic-rich soils extent (in ha)

	Shallow peaty or organo-mineral	Deep peaty or organic soil
England	738,618	679,926
Wales	359,000	70,600
Northern Ireland	141,700	206,400
Scotland	3,461,200	2,326,900
Total	4,700,518	3,283,826
		(JNCC, 2011)

South West Peak – Staffs/Derbys

Exmoor

Hamatocaulis vernicosus

Sphagnum platyphyllum

Why is 'shallow' peat shallow?

Understanding shallow peatlands

- There are various reasons for 'shallow' peatlands being shallow, both natural and anthropogenic:
 - Topographic, climatic and hydrological constraints on formation of deeper peat
 - Relatively fresh deposits at the outer edge of a larger, growing peat mass that may in time become 'deep' peat
 - Peat cutting which removes some or all of the deposit
 - Other human-induced causes of shrinkage and loss particularly drainage and de-watering, including ditching, pumping, water abstraction, and the effects of trees on or adjacent to already drained peatland, grazing.

Shallow peatland on the ground

- Overall, probably in a worse state than deeper peatlands
- Fundamentally, shallow peat should be considered in the same way as any other peatland
- Need biological, hydrological, peat surveys to properly evaluate
- Understand the ecohydrological environment in which the peatland developed
- Is the peatland modified? What are the pressures?
 - Drains?
 - Grazing?
 - Turbary?
- How can these modifications be reversed to restore natural hydrological function?

...and where do trees fit in?

- Trees are/would have been a natural component of many naturally shallow peatlands
- Trees can be vital in regenerating stream-mire systems by creating blockages to flowpaths, roots stabilising channel beds etc
- Add structural diversity and complexity
- Add dynamism to the system e.g. fallen trees
- Understand ecological and hydrological context
- Always seek first to restore hydrological system
- For tree establishment need to consider why, what, where, how and when