Impact of burn management upon peatlands

Fred Worrall1, Gareth Clay1, Rob Marrs2 & Mark Reed3

1. Department of Earth Sciences, University of Durham
2. School of Environmental Sciences, University of Liverpool
3. Aberdeen Centre for Environmental Sustainability, University of Aberdeen
What does the review cover?

- Biodiversity
- Hydrology
- Greenhouse gases and carbon
- Socio-economic impacts
- Dominated by study of UK upland peats
- Does draw upon studies from across the Northern Hemisphere
Methodology

- **Considered:**
 - Published papers and ‘grey’ literature e.g. reports
 - Significant effect or not
 - Direction of effect size

<table>
<thead>
<tr>
<th>Author</th>
<th>Soil Respiration</th>
<th>Primary productivity</th>
<th>Methane</th>
<th>DOC</th>
<th>POC</th>
<th>Dissolved CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward et al. (2007)</td>
<td>↑</td>
<td>↔</td>
<td>↓</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worrall et al. (2007a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball (1974)</td>
<td></td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garnett et al. (2000)</td>
<td></td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay et al. (2009b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Imeson (1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Tallis (1987)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
</tr>
</tbody>
</table>
What limits are there on the review?

- Definitions
- Does not include:
 - Effects of wildfire
 - Peat burning as fuel
- Includes both peer-reviewed and ‘grey’ literature
 - Peer-reviewed studies are taken at face value
The aims of burning

- Ancient vegetation management practise as old as farming
- Grouse moor burn management as we know it comes from late 19th, early 20th Century
 - Lovat review (1911) codifies practise
- Purpose of burning
 - Create a mosaic of *Calluna* stand ages
 - Promote forage for grouse and sheep
 - Leave cover for birds
 - Limit fuel load
- Timing, location, practise and suggested rotation length are now covered by national burning codes
Trends in burning

- Estimates of areal extent vary
 - 15% for England
 - 114 km2 burnt a year in England
 - 1000 km2 subject to burning
 - 18% for UK
 - 3150 km2

- Regional variation is great
 - 1-2% in Borders
 - 20% in North Pennines

- Burn rotations
 - Limited by codes of practise
 - Regionally controlled by growth rates in *Calluna*

- Is burning area/frequency increasing?
 - Yes, in some areas, but not all

- Increasing use of technology
 - Use of pressurized burners and foggers
Biodiversity

- **Winners**
 - E.g. golden plover

- **Losers**
 - E.g. some bryophytes

- **Issues:**
 - Local variation in effect

Can we change burn practise to promote overall biodiversity? Or to favour peat forming species?
Hydrology

- Mixed water quality results
 - Increases and decreases for water colour
 - Limited data on metals and nutrients
- Can we change burn practise to improve hydrology?
 - Rewetting areas
Water quality

- There has been debate over the impact of burning on DOC/water colour
- Studies differ on whether they measure soil water, runoff water, stream water, catchment or plot scale
- Studies are more or less balanced in number

<table>
<thead>
<tr>
<th>Study</th>
<th>DOC/Water Colour</th>
<th>Location</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worrall et al., 2007</td>
<td>↓</td>
<td>North Pennines</td>
<td>Plot</td>
</tr>
<tr>
<td>Yallop and Clutterbuck 2009</td>
<td>↑</td>
<td>North Yorkshire and South Pennines</td>
<td>Catchment</td>
</tr>
<tr>
<td>Clay et al., 2009</td>
<td>×</td>
<td>North Pennines</td>
<td>Plot</td>
</tr>
<tr>
<td>Ward et al., 2007</td>
<td>×</td>
<td>North Pennines</td>
<td>Plot</td>
</tr>
<tr>
<td>Chapman et al., in press</td>
<td>×</td>
<td>North Yorkshire</td>
<td>Catchment</td>
</tr>
<tr>
<td>Helliwell et al., 2010</td>
<td>↓</td>
<td>Scottish Highlands</td>
<td>Plot</td>
</tr>
<tr>
<td>Yallop et al., 2010</td>
<td>↑</td>
<td>South Pennines</td>
<td>Catchment</td>
</tr>
</tbody>
</table>
Greenhouse gases & carbon

- There are individual studies of individual components
 - Few monitor multiple pathways

- Effect on soil erosion
 - Increased in POC and suspended sediment

- Only one complete study
 - Based at Moor House

“What is needed is a study of the full carbon budget which takes account of all vegetation types across several sites under different management regimes and in different geographical and climatic areas”
Carbon budget of treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>graze, no burn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>graze, 10 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>graze, 20 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no burn, no graze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no graze, 10 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no graze, 20 yr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbon flux (tonnes C/km²/yr)

Initial loss at onset of burning

The period we measured at Moor House
Socio-economic benefits

- Grouse production and livestock production
 - Enhanced production rates
 - Limited data on the economic side
- Landscape value
 - Not much data in the UK
- Wildfire
 - Link between MB and WF
Conclusions

Outstanding research questions and issues

- What is the UK fire regime?
- Differences between styles of burning?
Heterogeneity of burning

- Peat
- Litter
- Moss
- Veg

Low severity burn:
- Biomass still present
- Litter untouched

High severity burn:
- Burns into peat
Outstanding research questions and issues

- What is the UK fire regime?
- Differences between styles of burning?
- Particular issues could not be resolved in this review e.g. water quality and DOC
- Firmer scientific basis for some long-held assumptions

Feedback

- Table 9 in the report
- Consultation responses
Thank you